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Context—Chronic kidney disease (CKD) is prevalent in older individuals, but the risk
implications of low estimated glomerular filtration rate (eGFR) and high albuminuria across the
full age range are controversial.

Objective—To evaluate possible effect modification (interaction) of age on the association of
estimated GFR and albuminuria with clinical risk examining both relative and absolute risk.

Design, Setting, Participants—We investigated 2,051,244 participants from 33 general
population or high-risk (of vascular disease) cohorts and 13 CKD cohorts from Asia, Australesia,
Europe, and North/South America conducted during 1972–2011 with mean follow-up time of 5.8
years (range 0–31 years).

Main Outcome Measures—Hazard ratios (HRs) of mortality and end-stage renal disease
(ESRD) according to eGFR and albuminuria were meta-analyzed across age categories after
adjusting for sex, race, cardiovascular disease, diabetes, systolic blood pressure, cholestserol, body
mass index, and smoking. Absolute risks were estimated using HRs and average incidence rates.

Results—Mortality (112,325 deaths) and ESRD (8,411 events) risk were higher at lower eGFR
and higher albuminuria in every age category. In general/high-risk cohorts, relative mortality risk
for reduced eGFR decreased with increasing age: e.g., adjusted HRs (95% CI) at eGFR 45 vs. 80
ml/min/1.73m2 were 3.50 (2.55–4.81), 2.21 (2.02–2.41), 1.59 (1.42–1.77), and 1.35 (1.23–1.48) in
age categories 18–54, 55–64, 65–74 and 75+ years, respectively (P-values for age interaction
<0.05). Absolute risk differences for the same comparisons were higher at older age (9.0 [95% CI,
6.0–12.8], 12.2 [10.3–14.3], 13.3 [9.0–18.6], and 27.2 [13.5–45.5] excess deaths per 1,000 person-
years, respectively). For increased albuminuria, reduction of relative risk with increasing age were
less evident, while differences in absolute risk were higher in the older age categories (7.5 [95%
CI, 4.3–11.9], 12.2 [7.9–17.6], 22.7 [15.3–31.6], and 34.3 [19.5–52.4] excess deaths per 1,000
person-years, respectively by age category, at ACR 300 mg/g compared to 10 mg/g). In CKD
cohorts, adjusted relative hazards of mortality did not decrease with age. In all cohorts, ESRD
relative risks and absolute risk differences at lower eGFR or higher albuminuria were comparable
across age categories.

Conclusions—Both low eGFR and high albuminuria were independently associated with
mortality and ESRD regardless of age across a wide range of populations. Mortality showed lower
relative risk but higher absolute risks differences at older age.

Chronic kidney disease (CKD) is defined by reduced glomerular filtration rate (GFR < 60
ml/min/1.73m2) or kidney damage (usually detected by high albuminuria ≥ 30 mg albumin
per gram of creatinine).1 CKD affects 10 to 15% of adults in the US, Europe and Asia,2–4

and the prevalence increases dramatically with age (from 4% at age 20–39 to 47% at age
70+ years in the US).2 Recently, it has been suggested that the definition and staging of
CKD and corresponding clinical risk should be determined by the combination of estimated
GFR (eGFR) and albuminuria levels.5–7 These kidney measures are also used for
cardiovascular risk stratification in clinical guidelines.8,9 However, there is controversy
whether age modifies their independent and combined association with clinical risk, partly
due to different analytic approaches.10–14 The resulting uncertainty about the comprehensive
impact of age on CKD-risk relationship hampers optimal clinical practice and public health
initiatives for this large patient group.

Before general implementation of the recently revised CKD classification system,
acceptable clinical risk performance must be demonstrated in all age groups. The purpose of
the current study was therefore to evaluate possible effect modification (interaction) of age
on the association of estimated GFR and albuminuria with clinical risk examining both
relative and absolute risk. We analyzed data from 2 million participants in 46 different
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cohorts to characterize the mortality and end-stage renal disease (ESRD) risk across the full
age range (18–108 years) using a uniform analytic approach.

METHODS
The Chronic Kidney Disease Prognosis Consortium (CKD-PC) consists of cohorts
worldwide from general, high-risk (for vascular risk), and CKD populations with baseline
information on eGFR and albuminuria, at least 1000 participants (not applied to CKD
cohorts) and ≥50 events for any outcome of interest during follow-up (eAppendix 1).7,15–17

The CKD-EPI equation with serum creatinine values standardized to Isotope Dilution Mass
Spectrometry (IDMS) traceable methods was used to estimate GFR.18 For studies in which
creatinine measurements were not standardized to IDMS, we reduced the creatinine levels
by 5%, as previously reported.19,20 Albuminuria was preferably measured as albumin-to-
creatinine-ratio (ACR), but studies with urine albumin excretion rate, urine protein-to-
creatinine ratio (PCR), or dipstick protein were also included. Information on demographic
and cardiovascular risk factors was also obtained for all subjects (eAppendix 2). Age was
categorized as 18–54, 55–64, 65–74, and 75+ years. Participants with missing values for
either eGFR or albuminuria were excluded. Missing values for other adjustment variables
were replaced by the cohort mean, as more advanced imputation methods were not feasible
within this large consortium. Our primary endpoints were all-cause mortality and ESRD.
ESRD was defined as starting dialysis, kidney transplantation or death coded as because of
kidney disease other than acute kidney injury. The results for cardiovascular mortality (death
due to myocardial infarction, heart failure, sudden cardiac death, or stroke) are shown in the
Appendix only given the similarity to results for all-cause mortality. The study was based on
deidentified information from studies previously approved by individual ethical boards, and
the current meta-analysis was approved by the institutional review board at the Johns
Hopkins Bloomberg School of Public Health.

In each study cohort, eGFR linear splines (knots at every 15 ml/min/1.73m2 from 30 to 105
ml/min/1.73m2 [90 ml/min/1.73m2 in CKD cohorts]) and their product terms with age
category were incorporated in Cox proportional hazards models, providing hazard ratios
(HRs) with eGFR 80 ml/min/1.73m2 (50 ml/min/1.73m2 in CKD cohorts) selected as a
stable reference for all age categories (eAppendix 2). Reference ranges are important for
conducting statistical significance tests but do not alter the shape of the association across
the full range of exposure. CKD-PC usually uses the reference range of eGFR 90–104 ml/
min/1.73m2 (95 for continuous analysis) for general population and high-risk cohorts.
However, given that few people in the oldest age category had eGFR in this range (2.3%)
and thus very few events (particularly ESRD) were observed in this eGFR range, we
selected a lower eGFR category of 80 ml/min/1.73m2 as the reference for the present study.
Other covariates in the models were sex, race/ethnicity (black vs. non-black), history of
cardiovascular disease, diabetes, systolic blood pressure, serum total cholesterol, body mass
index, smoking, albuminuria (log-transformed ACR or PCR or dipstick categories) and for
clinical trials the randomized intervention. Interactions, i.e. effect modifications, were
evaluated as the ratio of HRs in each age category compared to the age category of 55–64
years at each 1 ml/min/1.73m2 of eGFR from 15 to 120 ml/min/1.73m2 (point-wise
interaction). Overall interaction for each age category compared to age 55–64 years across
the full range of eGFR was assessed by averaging the coefficients for product terms between
eGFR splines and age categories using inverse-variance weighting. Estimates from each
cohort were pooled using random effects models. The same approach was applied to log-
ACR risk associations, with knots at 10, 30, and 300 mg/g (30, 300, and 1000 mg/g in CKD
cohorts) and the reference point of 10 mg/g (20 mg/g in CKD cohorts). Point-wise
interaction of the ACR-risk association was assessed at approximate 8% increments of ACR.
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The adjustment for eGFR was conducted using its spline terms. See eAppendix 2 for more
details on analytical methods and individual cohorts.

We estimated the adjusted average absolute risk using the weighted average incidence rates
in the reference age category (55–64 years) at the reference range of eGFR (75–89 ml/min/
1.73 m2) or ACR (<30 mg/g) combined with the meta-analyzed adjusted HRs for each level
of eGFR and ACR. The weights were from the random effects meta-analysis for HRs at
adjacent points to the reference eGFR (80 ml/min/1.73m2) and ACR (10 mg/g) point in the
spline models. For additive interaction, we tested whether the incidence rate difference was
equal across age groups and its sign (direction) was noted. The standard errors for additive
interaction (incidence rate differences) were calculated using the delta method and the
variance-covariance matrix of all the spline regression coefficients obtained using multi-
variate meta-analysis and restricted maximum likelihood.21 Since a single reference average
incidence rate is combined with the adjusted hazard ratios to get all the adjusted average
risks, the reference average incidence rate itself does not affect statistical tests of risk
differences or interactions and was assumed to be constant in standard error calculations.

Categorical analyses comparing the risk in 32 categories of eGFR (<15, 15–29, 30–44, 45–
59, 60–74, 75–89, 90–104, ≥105 ml/min/1.73m2) and albuminuria (ACR: <10, 10–29, 30–
299, ≥300 mg/g; PCR: <15, 15–49, 50–499, ≥500 mg/g; or dipstick test results: negative,
trace, 1+, ≥2+) were done in general and high-risk cohorts. For mortality we used eGFR 75–
89 and the lowest albuminuria category as the reference. For ESRD, we used the no-CKD
definition (eGFR ≥60 and ACR<30 or equivalent proteinuria) as the reference since ESRD
is rare at optimal kidney function.1 Differences in absolute risks were calculated, and their
standard errors were calculated using the delta method using the variance-covariance matrix
of the main effects and interactions obtained with multivariate meta-analysis.21 Since there
were few participants with eGFR <15 ml/min/1.73m2 in the general population (<0.1%) and
high-risk (0.2%) cohorts, we only reported results for this eGFR category in the CKD
cohorts. Heterogeneity was estimated by the χ2 test for heterogeneity and the I2 statistic. In
all analyses, two-sided P-values less than 0.05 were considered significant. All analyses
were done with Stata 11.2 (StataCorp LP, College Station, Texas).

RESULTS
Forty-six cohorts (20 from North America, 12 from Europe, 10 from Asia, 1 from Australia,
and 3 international) with 2 million adults were included and followed for a mean period of
5.8 years during 1972–2011. Mean age was 49.4 years (range 18–103 with 148,951 (7.3%)
subjects above age 75). The prevalences of diabetes, treated hypertension and current
smoking were 10.7, 27.9, and 21.5 %, respectively. In general population and high risk
cohorts, older age was associated with lower mean GFR and a higher prevalence of
albuminuria (Table 1), history of cardiovascular disease, hypertension, diabetes, and other
risk factors (eTable 1). There were a total of 112,325 deaths and 2,766 ESRD events among
the general population and high risk cohorts, and an additional 9,037 deaths and 5,962
ESRD events in the CKD cohorts.

Figure 1 panels A and B show adjusted relative hazards of all-cause mortality for eGFR and
ACR. Mortality risk was higher at lower eGFR and higher ACR within each age category
(18–54, 55–64, 65–74 and 75+ years), but adjusted HRs were progressively lower at older
age. For example, HRs at eGFR 45 (vs. 80 ml/min/1.73m2) were 3.50 (95% CI, 2.55–4.81)
in 18–54 years, 2.21 (2.02–2.41])in 55–64 years, 1.59 (1.42–1.77) in 65–74 years, and 1.35
(1.23–1.48) in 75+ years (see eFigure 1 for study-specific results). Interaction was assessed
both for each point in the graphs and overall compared to age 55–64 years as a reference.
Point-wise age-interaction was significant in a broad range of eGFR (symbols in the bottom
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of Figure 1 panel A show significant positive interaction, stronger effect, for younger ages,
and negative interaction, weaker effect, for older ages). The difference in the four age
categories were due to the difference in the slopes between eGFR 45 and 75 ml/min/1.73m2;
the slopes at <45 ml/min/1.73m2 were largely parallel across the age categories.
Nevertheless, the overall interaction was significant in all age categories compared to 55–64
years (all P<0.004, eFigures 2–4). Despite this significant age interaction, mortality risk
always started to increase in the eGFR range 60–75 ml/min/1.73m2, although in age 75+ it
only reached statistical significance at eGFR of 56 and lower. Age-interaction with ACR
was less evident, and significant point-wise interaction was only observed at higher ACR
ranges (Figure 1, panel B). For example, HRs of all-cause mortality at ACR 300 (vs. 10 mg/
g) were 2.53 (95% CI 2.13–3.03) in 18–54 years, 2.30 (1.84–2.88) in 55–64 years, 2.10
(1.83–2.44) in 65–74 years, and 1.73 (1.45–2.05) in 75+ years. Overall interaction reached
significance only for age categories 65–74 (P=0.020) and 75+ (P=0.002) showing lower
relative hazards than age 55–64 years (eFigures 5–7). The associations were consistent
across subgroups detmined by race, sex, and hypertension and diabetes status (eFigure 8–
11).

Figure 1 panels C-D show all-cause mortality rate (absolute risk) for eGFR and ACR by age
categories based on weighted average across the cohorts adjusted for covariates. A steeper
slope at older age indicates a higher absolute risk difference associated with low eGFR as
compared with younger age categories. For example, at eGFR 45 (vs. 80 ml/min/1.73m2)
there was 9.0 [95% CI, 6.0–12.8] extra deaths per 1,000 person-years in 18–54 years, 12.2
[10.3–14.3] in 55–64 years, 13.3 [9.0–18.6] in 65–74 years, and 27.2 [13.5–45.5] in 75+
years. This pattern of higher absolute risk difference at older age for a worse kidney marker
profile than the reference (positive interaction) and lower risk difference at younger age
(negative interaction) was statistically significant for most eGFR values below 40 ml/min/
1.73m2. Panel D shows similar trends for high albuminuria with the additive interaction
reaching statistical significance at all ACR values; the absolute risk difference of ACR 300
mg/g compared to 10 mg/g were 7.5 [4.3–11.9] in age 18–54 years, 12.2 [7.9–17.6] in 55–64
years, 22.7 [15.3–31.6] in 65–74 years, and 34.3 [19.5–52.4] in age 75+ years. Studies with
only older individuals demonstrated similar relative risk of mortality as other studies
contributing to Figure 1 (eFigure 12). Relative and absolute risks for cardiovascular
mortality were similar to all-cause findings (eFigure 13).

Figure 2 shows relationships for ESRD. For ESRD, the adjusted relative hazard started to
increase around eGFR 70 ml/min/1.73m2 and ACR 10 mg/g in all age categories (panels A
and B). With the exception of slightly stronger association in the youngest age group within
a limited range of eGFR (41–51 ml/min/1.73m2) and ACR (81–440 mg/g), no significant
point-wise interactions were observed. Similar results were observed in the subset of cohorts
where we conducted competing risk ananalysis (eFigure 14). The oldest age category had
the lowest hazard ratio associated with eGFR at 45 ml/min/1.73m2 but demonstrated steeper
slope at eGFR<45, catching up with other age categories by 15 ml/min/1.73m2 (Figures 2
and eFigure 15). Overall interactions for eGFR and ACR were not significant in age
categories of 18–54, 65–74, and 75+ compared with the reference age category of 55–64
years (P-values ranged from 0.113 to 0.730, eFigures 16–21). The adjusted average ESRD
incidence rate at a given level of eGFR or ACR was lower in the oldest age group (Panels C-
D). However, the differences in absolute risk were not significant except for a limited GFR
range where adjusted average ESRD incidence rate was higher in the youngest age group.

Similar findings were observed when we tested age-interactions with combined categories of
eGFR and albuminuria (Figure 3 and eTable 2). Specifically, relative associations with all-
cause mortality were often strongest (red cells) in the youngest; conversely absolute risks
were highest at older age with low eGFR and high albuminuria, although differences
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compared to age 55–64 were only statistically significant for a subset of the cells. For ESRD
the associations with both eGFR and ACR were very strong in all age groups with effect
modification by age being more subtle with three of 15 cells showing weaker relative
hazards at older ages (65–74 and 75+ years) and fewer (three at age 65–74 and none at age
75+) showing lower ESRD risk difference compared to the same cell at age 55–64 (eFigure
22).

Figure 4 shows a separate analysis of CKD cohorts using a lower reference point for eGFR
(50 ml/min/1.73m2) (Panels A and C for all-cause mortality and panels B and D for ESRD).
The slopes for relative risk of mortality were largely parallel across age categories indicating
no age interaction. Somewhat steeper slope was observed at older age category for ESRD,
although overall interaction was of borderline significance (p=0.04, 0.07 and 0.08 for ages
18–54, 65–74 and 75+ vs. 55–64 years). Absolute mortality risk was higher at older age, but
the risk difference (additive interaction) was largely non-significant (panel C). For ESRD, at
moderately reduced eGFR the youngest age group had the highest adjusted average
incidence rate but similar relative hazards with the other age categories due to a higher risk
at the reference eGFR. The risk increased steeply among older individuals leading to
comparable absolute risks around eGFR 15 ml/min/1.73m2. Analysis of increasing levels of
albuminuria in CKD patients showed similar patterns with the caveat that only a few CKD
cohorts measured ACR (eFigure 23).

DISCUSSION
In this large collaborative meta-analysis, low eGFR and high albuminuria were associated
with mortality and ESRD regardless of age. We found that mortality risk associations were
weaker on the relative scale but stronger on the absolute scale at older ages in general
population and high risk cohorts. In cohorts specifically selected for CKD age did not
modify the mortality associations. For ESRD risk, age did not significantly influence
relative and absolute risk gradients. Thus, eGFR and albuminuria were strongly associated
with both mortality and ESRD in a wide range of studies across the full age range.
Importantly, the results were largely consistent across diverse cohorts in terms of
demographic and clinical characteristics.

In principal, CKD diagnosis could be based on i) “normal” values based on the distribution
in appearantly healthy individuals or ii) kidney marker levels associated with increased risk
for future adverse outcomes.22 Supporters of the former approach have cited a dramatic rise
in the prevalence of nephrosclerosis with age in kidney biopsies, even among healthy kidney
donors, and suggested the concept of natural inevitable senescence of the kidneys suggesting
age specific cutoffs for defining normal kidney function.14 Several studies suggesting that
the mortality relative risk associated with low eGFR is reduced at older age have also been
used as arguments for age specific CKD diagnosis and staging.10,12,13,23 In contrast, our
meta-analysis documents that risk of mortality and ESRD is increased at approximately 60
ml/min/1.73m2, the threshold used for defining CKD over the last 10 years, across all age
groups. In fact, at the oldest age group while relative risks of mortality are lowest,
attributable risks are highest. Therefore, while economic and other considerations should be
taken into account, in terms of risks of mortality and ESRD our data support the current
thresholds for defining and staging CKD.

We provided both relative and absolute risk estimates as they complement each other.
Relative risks are more generalizable across different settings24 (high and low baseline risk
and varying duration of follow-up) while absolute risks are concrete easy-to-understand
estimates which guide cost-benefit analyses and estimates of the potential for prevention. An
attenuation of the relative mortality risk associated with low eGFR is found with increasing
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age, as shown for traditional cardiovascular risk factors.25 This lower relative risk at older
age may result from higher comorbidities, even at optimal kidney function. On the other
hand, absolute risk differences (excess deaths per 1,000 person years) is higher among older
people. Similar relative risk attenuations but absolute risk increases have been found with
older age for cardiovascular risk factors such as hypertension, hypercholesterolemia, and
obesity,26 yet clinical guidelines do not advocate age-specific “normality” based cutoffs for
these risk factors but rather use “risk based” cutoffs. The similarity of our results for eGFR
support a similar approach for defining CKD. For example, even at age 75+ persons with
eGFR 45–59 ml/min/1.73m2 and optimally low albuminuria had significantly increased
mortality risk, though they had lower relative hazards and higher absolute risks than at
younger ages. Furthermore, our CKD cohorts displayed no attenuation of relative risks with
age. On the other end of the eGFR spectrum, our study confirms that very high eGFR values
are associated with increased relative and absolute moratlity risk in subjects above age 55
years. This is likely caused by the influence of patients with reduced muscle mass due to
malnutrition and other effects associated with cancer or other significant comorbidities. Risk
implications of high eGFR values should therefore be interpreted with caution.

Most,10,11,16,27–29 but not all,30,31 studies found a significant association of mortality risk
with higher levels of albuminuria among older individuals. The higher risk with albuminuria
has been found across all age groups and eGFR levels,10 and in elderly subjects from
diabetic, non-diabetic and community based cohorts.10,11,27,28 It has been suggested that the
optimal cut-off for predicting death is lower than the cutoff for defining CKD.29 The current
meta-analysis did not assess the most optimal cutoff, but established that the risk association
is linear on the log-log scale with no thresholds. Variation in relative hazards with age was
modest and limited to very high albuminuria while excess mortality associated with
albuminuria was consistently higher at older ages.

Lower ESRD risk for a given level of eGFR has been reported at old age,13,15,32 and
treatment recommendations have been cautious in patients above age 70 with moderately
reduced eGFR.1,33 We found a trend towards lower ESRD risk at 75+ years, which may be
partially due to higher mortality risk at the older age (competing risk). Also, several clinical
or social factors other than kidney function, may affect the decision to initiate kidney
replacement therapy, particularly in older individuals. A recent analysis of the Alberta
Kidney Disease Network focused on showing that untreated kidney failure and its ratio to
ESRD increased dramatically with age.34 Importantly, the adjusted HRs for ESRD
associated with low eGFR were similar across age groups in our analysis. Neither did we
find age differences in the ESRD risk gradient associated with high albuminuria. The current
analysis expands on previous work by looking at both eGFR and albuminuria and
contrasting mortality and ESRD associations. Importantly, using individual level reanalysis
of data from 40 countries we are able to obtain definitive results with a global context.

Our findings have several important implications. First, our study shows that the kidney
measures used for defining and staging CKD are strong predictors of clinical risk across the
full age range, including the age 75+ years in many cohorts. This contradicts concerns raised
by some that current CKD guidelines should be used with caution in older individuals and
that low eGFR only reflects natural aging.12,30,32,35,36 Relating variation in kidney function
at older age to subsequent outcomes is the best way to distinguish kidney health from
disease without relying on theoretical arguments of what is natural. Second, our data
supports the recommendations from several investigators that CKD measures should be
added to mortality risk equations.37,38 This is, however, still debated,39,40 and our meta-
analysis did not assess the incremental prognostic value of adding CKD markers. Third, the
strong increase in mortality rate along with kidney measures at older ages suggests that older
adults should not be left out from management strategies of CKD. Previous data show that
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low eGFR in the very old is associated with classical CKD complications like anemia,
acidosis, hyperparathyroidism and hyperphosphatemia.41 There is also an increasing risk of
untreated kidney failure with age,34 which may be more common in general population
cohorts than cohorts selected for CKD, further supporting this view. Overall, the current risk
based system for defining and stageing CKD is supported by robust evidence across the full
age range.5–7 Relying on one common CKD classification system for all age groups
facilitates implementation in general practice, but clearly intensity and type of treatment
could differ by age due to remaining lifetime and comorbidities. Nevertheless, further
studies are needed to elucidate whether interventions to prevent CKD progression or CKD-
related outcomes are similarly effective and cost-effective across age categories. Although
we evaluated critical clinical outcomes, studies taking into account quality of life would be
warranted particularly for older age groups.

Some limitations of our study need to be discussed. Serum creatinine measurements were
not standardized in all studies. However, we observed similar results when we limited our
analysis to studies with serum creatinine measurements standardized to IDMS (data not
shown). There is also concern about validity of the CKD-EPI equation in older individuals.
However, a recent paper reported that the CKD-EPI equation may be as accurate in older
individuals as in younger individuals.42 Furthermore, there is no internationally accepted
gold-standard method for measuring urine albumin, and sampling and storage of urine were
not standardized. Many cohorts also used dipstick, which is a semi-quantitative method, for
assessing albuminuria, limiting numbers of participants in the analysis for ACR as a
continuous variable. Therefore, misclassification of albuminuria, particularly for categorical
analysis, might exist. Heterogeneity across cohorts in absolute and relative risks is present
and needs to be considered, but our random effects meta-analysis conservatively
incorporates heterogeneity into its confidence interval calculations. Likewise, differences in
study quality could have influenced our results. Furthermore, results were consistent across
cohort type and after exclusion of the largest cohort. Our results need to be carefully
interpreted given that they were based on models adjusting for traditional risk factors.
However, the results were largely similar when we only adjusted for sex and race (data not
shown). Absolute risk at the reference point calculated as a weighted average of the cohorts
may not directly apply to any single setting. The shape of the associations and tests for
interactions in the present meta-analysis are independent of the exact risk at the reference
point. However, the current meta-analysis is not intended to develop an individual risk
prediction tool. The incidence rate differences reported are conservative since they adjust for
covariates, and unadjusted differences may be larger. We did not confirm the validity of
proportional hazards assumption for every study although some of the collaborating cohorts
individually comfirmed this assumption for clinical risk with eGFR and/or albuminuria as
predictors.16 Thus, the pooled HRs in this study estimate the average HR over follow-up
time.

The study is strengthened by showing consistent results across ACR, PCR, and dipstick
cohorts. We evaluated CKD-age interaction on both relative and absolute scale. Moreover,
inclusion of 2 million subjects world-wide increases precision and generalizability of
estimates to a level that previously has not been possible, particularly for the very old and
ESRD. Individual level data, common definitions of covariates, and uniform analysis with
adjustment for major risk factors further strengthens our study. We also used the CKD-EPI
formula for estimating GFR, which improves the accuracy of kidney function estimates and
overall risk prediction19,43 and has not been examined for age interaction in most cohorts.

In summary, our analysis of 2 million individuals from 46 cohorts across the world shows
that CKD markers were associated with risk across the full age spectrum. There was no
effect modification for ESRD risk, while relative mortality risk decreased with age.
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However, absolute mortality risk difference tended to increase with age. While some
variation in management of CKD should be considered by age based on cost and benefits,
with respect to risk of mortality and ESRD, our data supports a common definition and
staging of CKD based on eGFR and albuminuria for all age groups.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Adjusted hazard ratios (panels A and B) for all-cause mortality and average mortality rate
(panels C and D) according to eGFR (A and C) and ACR (B and D) within each age
category. The filled circles note statistical significance (p<0.05) compared to the reference
(black diamond) eGFR of 80 ml/min1.73m2 or ACR of 10 mg/g within each age category in
panels A and B and compared to age category 55–64 years in panels C and D. Plus signs and
open circles on the bottom of each panel represent significantly positive (greater effect size)
and negative (smaller effect size) point-wise interactions (p<0.05), respectively, compared to
age 55–64 years. Gaps indicate no significant point-wise interaction. Models are meta-
analysis of general population and high risk cohorts adjusted for sex, race, body mass index,
systolic blood pressure, total cholesterol, history of cardiovascular disease, diabetes,
smoking status, and albuminuria (panels A and C) or eGFR (panels B and D).
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Figure 2.
Adjusted hazard ratios (panels A and B) and average incidence rate (panels C and D) for
ESRD according to eGFR (A and C) and ACR (B and D) within each age category. The
filled circles note statistical significance (p<0.05) compared to the reference (black
diamond) eGFR of 80 ml/min1.73m2 or ACR of 10 mg/g within each age category in panels
A and B and compared to age category 55–64 years in panels C and D. Plus signs and open
circles on the bottom of each panel represent significantly positive (greater effect size) and
negative (smaller effect size) point-wise interactions (p<0.05), respectively, compared to age
55–64 years. Gaps indicate no significant point-wise interaction. Models are meta-analysis
of general population and high risk cohorts adjusted for sex, race, body mass index, systolic
blood pressure, total cholesterol, history of cardiovascular disease, diabetes, smoking status,
and albuminuria (panels A and C) or eGFR (panels B and D).
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Figure 3.
Adjusted hazard ratio (panel A) and incidence rate difference (panel B) for all-cause
mortality by categories of eGFR and albuminuria across age groups. Each number represents
a pooled estimate from meta-analysis in 34 general population and high risk cohorts. All
results are adjusted for covariates. Bold numbers indicated statistical significance at P<0.05
compared to the reference cell and circles (○) indicate a significant negative interaction and
stars (*) indicate a significant positive interaction at P<0.05 compared to the corresponding
cell in the 55–64 year age group. Color shading indicates the strength of association
(approximately one quarter of all cells are shaded in each color; Green: low; yellow: mild;
orange: moderate; red: high) measured as either hazard ratios (panel A) or incidence rate
difference (panel B). Confidence intervals are provided in eTable 2.
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Figure 4.
Adjusted hazard ratios (panels A and B) and average incidence rate (panels C and D) for all-
cause mortality (A and C) and ESRD (B and D) in CKD cohorts according to eGFR within
each age category. The filled circles note statistical significance (p<0.05) compared to the
reference (black diamond) eGFR of 50 ml/min1.73m2 within each age category in panels A
and B and compared to age category 55–64 years in panels C and D. Plus signs and open
circles on the bottom of each panel represent significantly positive (greater effect size) and
negative (smaller effect size) point-wise interactions (p<0.05), respectively, compared to age
55–64 years. Gaps indicate no significant point-wise interaction. Models are meta-analysis
of CKD cohorts adjusted for sex, race, body mass index, systolic blood pressure, total
cholesterol, history of cardiovascular disease, diabetes, smoking status, and albuminuria.
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